Ученые Пермского национального исследовательского политехнического университета разработали алгоритм обучения нейросети, позволяющий с высокой скоростью реконструировать качественную 3D-структуру материала из 2D-изображений. Это соответствует задачам нацпроекта «Наука и университеты», сообщили в вузе.
«Экспериментальное изучение свойств сложных многокомпонентных материалов на реальных образцах не всегда эффективно и экономически оправдано. Чтобы оценить их характеристики и применимость для изготовления тех или иных деталей, используется численное 3D-моделирование материалов. Однако имеющиеся методы оцифровки трехмерных экспериментальных образцов требуют серьезных временных и экономических затрат», — рассказали в вузе.
Ученые разработали метод восстановления статистически эквивалентной 3D-модели пористой микроструктуры по 2D-изображению с помощью нейронной сети. В отличие от более ранних работ, предлагаемый алгоритм обучается без использования поэлементных составляющих в целевой функции, подлежащей оптимизации.
«Когда единственным носителем информации для реконструкции 3D-структуры является двумерное изображение поперечного сечения, способ его кодировки (извлечение наиболее важной информации) напрямую влияет на качество генерируемой структуры. Даже небольшой сдвиг изображения значительно увеличивает поэлементную ошибку, что дестабилизирует процесс обучения нейросети. Поэтому мы предложили более абстрактную функцию оптимизации, обладающую уникальными свойствами. Благодаря этому, возросла стабильность обучения нейросети и качество генерируемых 3D-структур», — рассказывает сотрудник научно-исследовательской лаборатории «Механика биосовместимых материалов и устройств» вуза Евгений Кононов.
Эксперименты показали, что визуальные и количественные оценки реконструированных нейросетью трехмерных моделей полностью соответствуют исходным структурам, а синтез происходит почти мгновенно. Таким образом, предложенный алгоритм позволит ускорить и удешевить процесс исследования гетерогенных материалов без потери в качестве.